
Examples

This distribution of the Mono PHP Compiler includes a couple of examples contained in the direc-
tory samples. Please change to that directory if you would like to play around with them. The
simplest one demonstrates the compilation and execution of a PHP script on its own. Another one
additionally demonstrates how a compiled PHP script can be used from a class written in another
.NET language. The other examples show how other .NET libraries can be accessed directly from
within a PHP script.

Example (1)

In the file Geometry.php you’ll find a PHP script defining some geometric classes to show the us-
age of some basic features that PHP offers:

<?php

class Shape {
 const pi = 3.14159265;
}

class Circle extends Shape {
 public $radius;
 public function __construct($radius) {
 $this->radius = $radius;
 }
 public function GetArea() {
 return 0.5 * Shape::pi * $this->radius * $this->radius;
 }
 public function GetRound() {
 return 2 * Shape::pi * $this->radius;
 }
}

class Rectangle extends Shape {
 public $x;
 public $y;
 public function __construct($x, $y) {
 $this->x = $x;
 $this->y = $y;
 }
 public function GetArea() {
 return $this->x * $this->y;
 }
 public function GetRound() {
 return 2 * $this->x + 2 * $this->y;
 }
}

You can for example see some of PHP’s object orientated features, so how classes, functions and
constructors are defined, how classes inherit other classes and how class constants are defined.

In the next few statements we’re playing a little with some objects. Like that you can see how
objects are created, how their methods are invoked and how their members are accessed.

$c = new Circle(2);
echo '$c is a circle with radius 2\n';
echo 'area of $c = ' . $c->GetArea() . '\n';
echo 'round of $c = ' . $c->GetRound() . '\n\n';

$r = new Rectangle(2, 4);
echo '$r is a rectangle with lateral leghts ' . $r->x . ' and ' . $r->y . '\n';
echo 'area of $r = ' . $r->GetArea() . '\n';
echo 'round of $r = ' . $r->GetRound() . '\n\n';

echo '$c is ' . (!($c instanceof Shape) ? 'not ' : '') . 'a Shape' . '\n';
echo '$c is ' . (!($c instanceof Circle) ? 'not ' : '') . 'a Circle' . '\n';
echo '$c is ' . (!($c instanceof Rectangle) ? 'not ' : '') . 'a Rectangle' . '\n';
echo '$r is ' . (!($r instanceof Shape) ? 'not ' : '') . 'a Shape' . '\n';
echo '$r is ' . (!($r instanceof Circle) ? 'not ' : '') . 'a Circle' . '\n';
echo '$r is ' . (!($r instanceof Rectangle) ? 'not ' : '') . 'a Rectangle' . '\n';

?>

To compile the script, call

mono ../mPHP.exe Geometry.php

which will produce an executable file called Geometry.exe.
To run it, call

mono Geometry.exe

which will output the result as expected:

$c is a circle with radius 2
area of $c = 6.2831853
round of $c = 12.5663706

$r is a rectangle with lateral leghts 2 and 4
area of $r = 8
round of $r = 12

$c is a Shape
$c is a Circle
$c is not a Rectangle
$r is a Shape
$r is not a Circle
$r is a Rectangle

Example (2)

In the file MathPHP.php you'll find a PHP script defining two functions, one for calculating faculty
numbers, the other one for fibonacci numbers:

<?php
class MathPHP {
 public static function Fib($a) {
 if ($a == 0)
 return 0;
 else if ($a == 1)
 return 1;
 else
 return self::Fib($a - 1) + self::Fib($a - 2);
 }
 public static function Fac($a) {
 if ($a == 0 || $a == 1)
 return 1;
 else
 return $a * self::Fac($a - 1);
 }
}
?>

Now we don't want to invoke them from inside the PHP script as in (1), but from a class written in
another .NET language. For this purpose we’ll compile the class with the /target:library option:

mono ../mPHP.exe /t:library MathPHP.php

which will produce an assembly file called MathPHP.dll.
Now have a look into the file MathCS.cs containing a C# class using the functions of the compiled
PHP script:

public class MathCS {
 public static void Main(string[] args) {
 // calculating faculty of 5
 Object fac5 = MathPHP.Fac(5);
 System.Console.WriteLine("Faculty of 5 = " + fac5);
 // calculating fibonacci of 5
 object fib5 = MathPHP.Fib(5);
 System.Console.WriteLine("Fibonacci of 5 = " + fib5);
 }
}

We’ll now compile this class. As it uses features of the compiled PHP script, it’s important to refer
to the assembly we just created and to the mPHPRuntime:

mcs /r:MathPHP.dll,mPHPRuntime.dll MathCS.cs

This will produce the executable file MathCS.exe. Calling mono MathCS.exe will output the result
as expected:

Faculty of 5 = 120
Fibonaccy of 5 = 5

Example (3)

The other .php files all show how other .NET libraries can be accessed directly from within a PHP
script. They all build simple Graphical User Interfaces using the Gnome libraries. I’ll discuss one of
these examples in this tutorial.

In the file Button.php you'll find a PHP script building a simple window containing a button. If this
button is clicked, a short text will be written on the console.

<?php

using System;
using Gtk;

Application::Init();
$w = new Window("Gtk# Basics");
$b = new Button("Hit me");
add_event($w, "DeleteEvent", new DeleteEventHandler(null, Window_Delete));
add_event($b, "Clicked", new EventHandler(null, Button_Clicked));
$w->Add($b);
$w->SetDefaultSize(200, 100);
$w->ShowAll();
Application::Run();

function Window_Delete($o, DeleteEventArgs $args) {
 Application::Quit();
 $args->RetVal = true;
}

function Button_Clicked($o, EventArgs $args) {
 echo("Hello, World!\n");
}

?>

First of all, the two namespaces whose types are used in the script need to be declared. This is
done by the using declaration which behaves in the same was as the one you know from C#. To
compile this script, we now need to refer additionally to the Gtk# library which is used in this ex-
ample. To do so, call

mono ../mPHP.exe /r:mPHPRuntime.dll,gtk-sharp.dll Button.php

which will produce an executable file called Button.exe.
To run it, call

mono Button.exe

which will show the window as expected as well as the short text when clicking the button:

